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APPLICATION O F  MAXIMUM LIKELIHOOD TECHNIQUES TO 

THE DESIGN OF OPTIMUM STAR TRACKERS 

By Edwin C. Foudriat 
Langley Research Center 

SUMMARY 

An analytical method has been developed for the design of optimum star trackers.  
In the method both the measurement procedure - that is, the position where measure- 
ment samples a r e  made - and the measurement processing - that is, the estimation of 
the star parameters from the measurement samples - are optimized. The method for 
measurement processing is based upon the use of maximum likelihood techniques. The 
equations to be satisfied for estimation of the position and intensity of a star a r e  given 
with the assumption that the photoelectrons leaving the cathode obey Poisson statistics. 

With the properties of the maximum likelihood method and the Cram&-Rao 
inequality, a technique is developed for optimization of the measurement procedure. 
General equations a r e  derived for the optimum measurement position on the cathode. 

The procedure is applied to  the design of a slit-type star tracker where it is 
desired to determine the x position of a star image with a Gaussian intensity distribution. 
The results indicate the star-tracker slit width should be based upon s t a r  image size and 
be independent cf star -to-background intensity ratio. The measurement procedure indi- 
cates sample should be made along the limb of the star image. In addition, the measure- 
ment processing equation for the single-slit star tracker can be simplified so that an 
approximate estimate of the star position offset from i t s  assumed position can be obtained 
in closed form. 
to-background intensity ratio. 

Results indicate the solution e r r o r  to  be small  and dependent upon star- 

INTRODUCTION 

In the determination of the attitude of spacecraft, stellar observations have been 
found to  be both extremely useful and accurate. 
the ones discussed in references 1 and 2 which require precision attitude determination, 
have used star-tracker techniques. Many methods of observation and many mechaniza- 
tions of the star-sighting technique have been employed. The accuracy of the techniques 
has been predicted analytically and verified experimentally. 

Many spacecraft, especially those like 

However, to  date no work 



was found which indicates how measurements might be taken in an  optimum fashion and 
how these methods might be used to  design an  optimum star tracker.  
effort was made to apply optimization techniques to the design and mechanization of a 
s tar- t racker  system. 

Therefore, an 

As has been well established, the a r r iva l  of stellar energy can be described by a 
statistical process. Therefore, the analysis immediately employs the statistical proce- 
dure called point estimation (ref. 3) to predict the position of the center-of-stellar 
energy. The technique of point estimation most frequently used is maximum likelihood, 
and it is by this method that a minimum variance estimator is derived. 
an  optimum method of processing the measured information. 
still further to minimize the variance function which in turn results in an optimum 
design. 
stellar energy distribution represented by an e r r o r  function which should be generally 
representative of the intensity of starlight when focused through a well-designed optical 
telescope. Hence, the result of this analysis is both the optimization of the s tar- t racker  
parameters  and the procedure for processing the measurement to obtain the estimate of 
star position. 

This leads to 
The analysis is carr ied 

To illustrate the principle, the procedure is carr ied out for the specific 

SYMBOLS 

AA 

B 

C 

En 

Fb 

FS 

f 1 

f 2  

a r ea  on the photocathode sampled by the measurement 

constant, fl(s) f2(k) 

AS constant, - 
XC 

6 k  

expectation operation 

expectation of number of electrons 

background distribution function integrated over the a rea  AA 

star distribution function integrated over a rea  AA 

function of s defined by equation (31) 

normalization function defined in equation (30) 
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f 3  function defined by equation (32) 

af3 fgx = - ax 

normalized point background distribution function 

normalized point star distribution function 

constant specifying the background intensity 

nondimensional slit width in x-direction 

likelihood function 

log L 

mean intensity per  unit a r ea  

number of samples 

number of photoelectrons 

number of photoelectrons in ith sample 

general statistical density function 

square of x relative position from center-of-star intensity, (x - i i )2 

value of q where optimum measurement should be taken 

function defined by equation (24) 

function defined by equation (26) 

r = @  

S slit width in y-direction 

A t  t ime interval of measurement 
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t ime interval of ith measurement 

measurement position on photocathode 

position of center of star image 

assumed position of image pr ior  to measurement 

maximum photocathode dimensions 

position of ith measurement 

ratio of photoelectron rate of ith measurement to expected background 
rate 

constant, - AS* 
Kb 

displacement of true image position from its assumed position 

y relative position from center-of-star intensity, y - G 

parameter 

value of 0 which maximizes L 

intensity of background, photoelectrons/unit t ime 

intensity of star, photoelectrons/unit t ime 

function of random samples which define parameter estimate 

value of p which maximizes L 

ratio of expected signal rate to expected background rate 
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empirical constant 

dummy variable 

APPLICATION O F  MAXIMUM LIKELIHOOD PROCEDURES TO 

STAR POSITION AND MAGNITUDE DETERMINATION 

It is assumed that the optical system of a telescope focuses its gathered light upon 
a photocathode placed at the focal plane of the system. As had been indicated by many 
authors, this photon collection is a statistical process so  that the number of photoelec- 
trons leaving the cathode at the point x,y can be given in t e r m s  of its probability dis- 
tribution function. 
photoelectrons leaving the cathode obey Poisson statistics (ref. 4). 

It is well established that, for sufficiently long integration times, the 

A pictorial representation of the star image and background intensity 
(photoelectrons/unit time) distribution is shown in figure 1. The photocathode surface 
is represented by the plane with dimensions xc and yc. The magnitude of the inten- 
sity is shown by the amplitude normal to the x,y plane. A s t a r  positioned at ;,$ with 
intensity distribution hsGs(x ,y ,~ ,~ )  and a background distribution given by xbc+,(X,y) 
is illustrated. The quantities As and hb represent the total photoelectron emission 
rate resulting from the star and background, respectively, where the factors affecting 
collection efficiency, effective aperture size, and photocathode efficiency have all been 
taken into account in the te rm h. The functions Gs(x,y,?,$) and %(x,y) are the 
normalized intensity density functions so  that 

Before proceeding with the analysis i t  should be noted that the pictorial represen- 
tation of figure 1 shows the expected situation - that is, if a number of unit t ime samples 
of intensity were made at the point x,y, the mean of these samples would be 

- 
= xsGs(x,Y~2~?) -!- xb%(x,Y) 

and that the samples would obey a Poisson distribution given by 

(n = O,l,. . .) 

In addition, it is assumed that the samples are statistically independent. 

5 



The samples discussed so far a r e  measurements at a specific point. In general, 
measurements must be taken over an  a rea  of the photocathode and over a specific time 
interval. Thus, each sample is given by 

J 

where AA specifies the a r e a  sampled at the photocathode and A t  the time interval of 
the measurement. 

If measurements of the photoelectron emissions a r e  taken at various points on the 
photocathode, then with equation (3) the joint probability density for  N samples can be 
written as 

Equation (5) can be rewritten as 

This probability density function describes mathematically the probability that measure - 
ments made of the photocathode current at the N points Xi7yi will result in ni photo- 
electrons at the ith measurement for all N measurements. 

A statement of the problem to be solved is as follows: when the ni measurements 
a r e  given, estimate the position of the central point of the star image and the star inten- 
si ty - that is, what values should be assigned to ?,$ and As. This general class of 
problem is given in reference 3. A procedure employed fo r  the solution of this type of 
problem is maximum likelihood. The procedure can be described by considering a ran-  
dom sample "1,. . .,nN from a distribution having a density function given by p(n,O) 
where 0 is the parameter t o  be found. Then, the likelihood function of the random 
sample can be defined as 
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It is obvious that the likelihood function is identical to the joint probability density func- 
tion. The procedure to maximize L is to  determine a function p(nl,. . .,nN) such 
that when 

L is a maximum. The maximum statistic - that is, the value of 8 which actually 
maximizes L for the measurements "1,. . .,nN - is designated by 

ê  = ji(n1,. . .,nN) (9) 

The maximization of L is accomplished by the standard procedure of partial differenti- 
ation with respect to the parameters  of interest and subsequent solution of the resultant 
equations. 

Applying this procedure to the problem at hand, equation (6) can be used with equa- 
tion (7) to give 

Taking the log of both sides gives 

Taking the partial derivatives of L' with respect to the parameters  of interest gives 



The simultaneous solution of equations (12) to (14) for  As, 2, and 9 provides the solu- 
tion for the extreme conditions of L’. Determining As, 2, and 9 which maximize 
L’ gives the maximum likelihood function estimation of the star magnitude and loca- 
tion, respectively. 
reference 5. 

A more general discussion of the  above problem can be found in 

A few general assumptions can be made concerning the representation of the inten- 
sity rate distribution function of the signal and background and the general measurement 
procedure. First, it is assumed that the background ra te  distribution is constant; that is, 

This assumption can be made without loss of generality since all the intensity rate varia- 
tion at the photocathode can be adequately described in the function FS(x,y,2,f). Second, 
the assumption that A t  is equal for all measurements is reasonable. Employing these 
assumptions, equation (12) can be written as 

The factor ni/At is the photoelectron arrival rate. Thus, 

ni 1 Photoelectron rate of measurement - -=a i=  
A t  Kb Expected background ar r iva l  rate 

and 

= 1 + P(x,Y,i,f) - h F  Expected photoelectron . ra te  -. s + 1 =  
Kb Expected background rate 

where 

Expected signal . . ra te  . - .~ - . 

p(x’y) = Expected background ra te  

Heuristically, equation (16) indicates that the value As is selected which makes th’e 
measured and expected a r r iva l  ra tes  match, and the function Fs is used as a means of 
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weighting the various measurement points. 
is made, then 

If it is assumed that a single measurement 

under the assumption that Fs(x,y) # 0, and ?,f are known exactly. 

Equation (13) can be processed in a similar manner. Using these factors in equa- 
tion (13) gives 

The only difference between equations (18) and (16) is that the weighting function on the 
individual t e rms  is altered from Fs to  aFs/&. 

solution to  the parameters As, 2, and $ with equation (16), equation (18), and a n  
equation similar to  equation (18) for 9. 
therefore, the result is applicable to  both. 

In general, it is obvious that a trial-and-error procedure can be used to  obtain the 

Equations (13) and (14) have identical form; 

ESTIMATION OF VARIANCE AND METHODS FOR THE DETERMINATION 

OF THE OPTIMUM MEASUREMENT PROCEDURE 

The maximum likelihood procedure has certain statistical properties which permit 
estimates of the accuracy with which the parameter 8 is determined. These properties 
a r e  known as efficient and sufficient estimates. These can be stated as 

1. If an efficient estimate of the parameter 8 exists, the likelihood equation will 
have a unique solution for 8. 

2. If a sufficient estimate of the parameter 8 exists, any solution of the likelihood 
equation will be a function of 8. 

A detailed discussion of sufficient and efficient estimates is given in reference 6. 
of the properties of estimations is that the variance satisfies the Cram&-Rao inequality 
which for  an unbiased estimator is given by 

One 

For the case of a n  efficient estimator, the equality sign can be used (ref. 6). 
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An additional property of the maximum likelihood procedure is described as follows: 
Under certain general conditions, the likelihood equation has a solution which converges 
in probability to  the t rue  value of 6 as n - m. This solution is an  asymptotically nor- 
mal and asymptotically efficient estimate of 6. Hence, if enough sample measurements 
a r e  taken, the equality sign in  equation (19) can be used. 

maximizing the absolute value of En (a2L'/a02}. The procedure for maximizing 
En(a2L'/a6z> can be carr ied out by 

It is apparent f rom equation (19) that minimization of the variance is related to 

Using 2 as an example and starting with equation (13) and equal measurement t imes 
gives 

From the definition of ai, it is apparent that 

and equation (21) upon taking the expectation becomes 

It is apparent that IEn@2L'/a?2}1 is maximized if each t e rm of the se r i e s  is 
maximized. Mathematically, if 

-- (a2)2 
Kb 

R;i(X,Y) = 
l + P  

then 
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can be used to  fulfill the c r i te r ia  of equation (20). The value of x,y obtained from this 
solution can be used t o  determine the position on the focal plane where the measurements 
should be taken in order  that the optimum1 prediction of the parameter 5 can be made. 

A similar procedure can be carried out for $ giving an equation identical to  equa- 
tion (24) and for  X s  giving 

where the maximization is carried out by use of equation (26). 

EXAMPLE OF STAR-SIGHTING PROCEDURE 

FOR SINGLE PARAMETER CASE 

The procedures outlined in the previous two sections can be illustrated by a n  
example using a single parameter. The example is simple enough to  ca r ry  through mathe- 
matically yet has some practical utility so  that the results can form a basis for suggesting 
the procedure in more complex cases. 

For the example, it is assumed that Gs(x,y) is an e r r o r  function intensity distri- 
bution at the focal plane given by 

The e r r o r  function curve used to  represent the star image has been normalized. 
means that a unit distance (x - 2) on the focal plane is related to  the condition where the 
star intensity has dropped to  0.606 of its maximum value. Hence, the analysis is based 
upon the normalized distance along the focal plane which is related in turn to  the optical 
image diffraction pattern (blur circle), the f-number, and aperture of the star tracker. 
is assumed in the example that any telescope distortion is reasonably well corrected 
along both x- and y-axes so that the diffraction pattern is both circular and symmetrical. 

A comment concerning the validity of the e r r o r  function representation is in order.  

This 

It 

It is well known that for  monochromatic plane wave light incident upon a circular aper- 
ture, the diffraction pattern of a n  optically perfect telescope is a circular Bessel function. 
In this pattern, distinct rings (ref. 7) are present with the distance of each ring having a 
definite relationship to  the wavelength of the source. When the source is no longer mono- 
chromatic but consists of a wide spectrum, then the rings are no longer distinct, either 

loptimum in the sense of minimum variance. 
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becoming blurred or losing the character of rings altogether. Because stellar detection 
of position uses  a wide spectrum of light, it is felt that the e r r o r  function represents a 
realistic approximation to  the intensity distribution at the focal plane and hence a good 
choice for the analysis. 

The first step is to determine the signal intensity f rom a finite aperture at the 
focal plane. Assume a reactangular aperture 2s-units wide in  the y-direction and 
k-units wide in the x-direction. Equation (4) can be written as 

Equation (28) assumes that 
c = y - 9. Hence, the < integral is symmetrical. By using the substitution that 
q = T - 2, equation (28) can be rewritten as 

is known and that the slit is positioned such that 

- . k  

FS(x,s,s,k) = 1 T exp(-qfl)dc r-1': exp(-$)dq 

x-x- z 

The e r r o r  integral is tabulated and published in numerous places, and therefore the inte- 
gral  of equation (29) is easily obtained numerically. A plot of the normalized function of 
the second integral is shown in figure 2 for values of k ranging from 0.2 to 4.0. Fig- 
u re  2 indicates all solutions have the same shape so that an  analytical representation of 
Fs will be sought in the form 

From equation (29), it is obvious that 

fl(s) = $J S exp($)dc 

0 

For fixed slit width in the y-direction, fl(s) can be readily obtained from a set  of nor- 
mal probability distribution tables. The function f3(x - %,ox) is estimated to be of the 
form 

f3(.-2,ox) = exp i:" - "3 
OX 

In figure 2 is a curve of equation (32) for ox = 2.20, and this curve shows almost perfect 
.agreement with the curve of the normalized function FS(x,?,s,k) for k = 1. In order  to 
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obtain other values, ux(k) was calculated at x - 2 = 1.0 for  various values of k. A 
plot of this function is shown in figure 3. is the normalization 
factor; that is, the value of 

The final function f2(k) 

& when x - 2 = 0. The function fz(k) / f i  is plotted in figure 4. 

With equations (30) and (32) it is a relatively simple matter to obtain explicit values 
for the functions used in the previous section. 
respectively, 

Thus, p(x,fi) and 8Fs/aii become, 

and 

where B = fl(s) f2(k). The maximum likelihood solution (eq. (18)) becomes 

r 1 
(x - fr) f3(x - 2) = 0 J 1" XsB ai 

1 + - f3(X - fc) 
Kb 

(35) 

A s  indicated in the analysis of the previous section, the heuristic approach to the 
solution of equation (35) is to make each te rm in the summation equal to  zero (or as close 
as possible) while the weighting function on each is the t e r m  
t e r m s  where x = fr and f3(x - fr) = 0 result in a zero weighting which means any mea- 
surement either a t  peak signal intensity o r  where the signal intensity is ze ro  contains 
very little information about 2 and hence are of no value. 

(x - k) f3(x - 2). The 

Equation (24) can be used to  construct the optimum measurement. technique. Sub- 
stituting equations (33) and (34) gives 

Rk 
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Using equation (25) and algebraic manipulation gives 

ax 

where 

af3 (X - 2) 
f3  

f3, - - ax = -2- 
OX 

Setting the te rm in the numerator of equation (37) equal to ze ro  and using equation (38) 
give 

= o  (39) 

The previous discussion indicated that no information is available when x = 2 and 
f3(x - 2) = 0, since the weighting function at these positions was zero. 
f32 = 0 must be t e r m s  which minimize R;i. 
tion (39) satisfies the maximum condition and its solution is given by 

Hence, x = 2 and 
The te rm within the brackets in equa- 

If q = (x - k)2, equation (40) can be written by using equation (33) as 

q =  

where 

The value of q which satisfies equation (41) gives the position a t  which the mea- 
surement should be taken in order that the variance of the estimate will be minimized. 
This solution will be designated 6. Once 6 is' known, equations (19) and (23) can be 
used to calculate the minimum variance as 
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where N is the total number of measurements made at the point 6. 
Review of equation (30) demonstrates that the solution of q and Var(?) are 

dependent upon k and s, the x- and y-dimensions of the slit, respectively. Therefore, 
the optimum measurement position and the minimum variance depend upon the slit con- 
figuration. Hence, the solution to the design of the instrument is to seek that value of 
(k,s) which reduces equation (43) to its minimum value. 

For the example considered, the optimization of the slit width is carr ied out in the 
x-direction only by assuming that the slit in  the y-direction extends the full length of the 
photocathode; that is, s = yc >> 1 .  Hence, equation (42) becomes 

(44) 

where Kb is given by equation (15) and the value of fl(s) (eq. (31)) is 1. Thus, 

equations (41) and (43) can be rewritten as 
6 

and 

Equation (45) was solved numerically to obtain 4 as a function of slit size for 
The values a r e  plotted in figure 5 where 6, the optimum mea- various values of C. 

surement position, is plotted against k, the slit width. Since C is the ratio of star 
intensity to background intensity per  unit distance, then figure 5 shows the effects of 
relative changes in the star-to-background intensity ratio. 
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Examination of figure 5 indicates that for very  small  slit widths the optimum 
measurement position l ies between 1.0 and 1.4. As the slit width increases, the posi- 
tion $1/2 increases. For example, when C = 100 and k = 2.0, the edges of the slit 
fall at 0.62 and 2.62. It is readily apparent from examination of figure 2, which can be 
interpreted as normalized star intensity as a function of slit position for various slit 
widths, that optimum measurements a r e  made near the maximum slope of the star 
intensity. This is logical from the information theory standpoint since the slit is posi- 
tioned to  avoid the high intensity at the center of the image which provides considerable 
increase in noise with little increase in information as to the star position. 
to-background intensity ratio decreases, the optimum position moves inward. 
inward movement is a result of trading background signal, which results in increased 
noise only, for increased star image intensity, which results in a slight increase in 
information along with the noise increase due to higher intensity. 
intensities, the inward shift ceases. 

As the s t a r -  
The 

For very low star 

Using the solution of equation (45) for $, it is possible to calculate the minimum 
variance for each case. Figure 6 shows the plot of equation (46) for the function 
N AtXs Var(5) as a function of slit width for various values of the parameter C. Since 6 
the Var(?) 
for convenience. It is clear that for optimum variance, independent of intensity ratio, a 
slit width of about 2.0 gives the lowest value on each curve. 
rectangular-slit star tracker,  which has an e r r o r  function image intensity shape, its slit 
should be twice its image size. 

Gs is equal to 0.606 of its peak value. 

is a direct function of C, the curves have been plotted with a scale factor 

Thus, for the optimum 

Image size is defined as the point where the amplitude 

PROCEDURE FOR DETERMINING STAR POSITION BASED ON 

OPTIMUM MEASUREMENT TECHNIQUES 

The preceding section has determined the optimum star- t racker  design. It is of 
interest to determine how one might use the maximum likelihood formulation to obtain an 
optimum estimate of the star position. 
tion (18), which must be satisfied for the measurements made. 
previous section (eq. (45)), indicates that two points symmetrically spaced on each side 
of the maximum star intensity point fi can be used if known. 

The starting point of such a technique is equa- 
The procedure in the 

The procedure for determination of the maximum intensity point can be illustrated 
in the sketch shown as figure 7. 
ment is shown as the solid curve with & as its center. 
alternately at x1 and x2 which a r e  kf i  distance from ?,, and the time increment 

The position of the image assumed pr ior  to the measure- 
The center of the slit is placed 
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at each measurement position is equal. 
in figure 7, with center at 2 is displaced a distance E f rom the assumed position. 
The procedure to  be developed is a determination of the value of E 

as a starting point. 

The true image position, shown as a dashed line 

using equation (18) 

From equations (33) and (34) 

and 

where i = 1,2. By using 

where r = E, equation (18) can be written after algebraic manipulation as 

2rE -1 + a1 - 2p cosh (".:L) - exp (-r2;E2) 
e x p ( - d [  ox I/ 

2 = exp(%)[ 2 r ~  2(r  ax - E )  ][1 + a2 - 2p  cosh(s )exp(-  r ox + E  ') 

where p is given by equation (44). 
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Obviously, the solution of equation (48) explicitly for  E is difficult. Therefore, 
solution by approximation is attempted. If it is assumed that E << r, and r " 6 then 

J 
With these approximations, equation (48) can be solved for E as 

2 r  { 2 [ 1 + p exp ( -- ::r - Pl + .2;, 

Equation (50) has been checked computationally against the solution of equation (18) 
for the condition of equal measurement on each side of the image circle. The results of 
these calculations are shown in figure 8. Comparison of the t rue E with that calculated 
from equation (50) for values ranging from 0.001 to  1.0 indicates that the e r r o r  is a fixed 
percentage of the t rue value and depends upon the factor 
appears to be correctable by an empirically derived function dependent upon star inten- 
sity, and hence a useful means of obtaining control e r r o r  information for the star tracker. 

C. Thus, the approximation 

CONCLUSIONS 

From the analysis given in this report, the following conclusions can be made: 

1. Assuming convergence to an efficient estimate of variance, the Cram6r-Rao 
equation can be used as a procedure to determine the optimum star-tracker design 
parameters.  For the example used in this paper, the optimum slit width is twice the 
image intensity parameter size and relatively independent of the star-to-background 
intensity ratio. 

2. In addition, the procedure can be used to determine the measurement position on 
the star image in order  to obtain the minimum variance estimate of star position. 
measurement procedure for the optimum slit size which places the center of the slit 
aperture at about 1.5 units from the center position of the image for stars which are 
bright relative to their background is the optimum measurement position. 
decreases slightly as the background intensity relative to star intensity increases. 

A 

This value 
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3. The maximum likelihood procedure for an optimum two-position measurement 
scheme can be approximated to  obtain a simple equation for  the e r r o r  in star position 
from its assumed value. The solution e r r o r  is small  and, in addition, is a fixed per- 
centage of the solution which is dependent upon the star-to-background intensity ratio. 
Hence, further correction by a factor dependent upon star intensity should be possible. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., December 13, 1967, 
125-19-03-12-23. 
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Figure 1.- Pictorial representation of star image and background intensi ty distributions on  the focal plane. 
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Figure 2.- Intensi ty distr ibut ion of an er ror  funct ion star image for various s l i t  widths. 
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Figure 3.- Plot of empirical parameter ox as a function of slit width. 
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Figure 4.- Plot of normalization factor f2 as a funct ion of slit width. 
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